44 research outputs found

    Understanding and Predicting Vadose Zone Processes

    Get PDF
    Vadose zone hydrologic and biogeochemical processes play a significant role in the capture, storage and distribution of contaminants between the land surface and groundwater. One major issue facing geoscientists in dealing with investigations of the unsaturated zone flow and transport processes is the evaluation of heterogeneity of subsurface media. This chapter presents a summary of approaches for monitoring and modeling of vadose zone dynamics in the presence of heterogeneities and complex features, as well as incorporating transient conditions. Modeling results can then be used to provide early warning of soil and groundwater contamination before problems arise, provide scientific and regulatory credibility to environmental management decision-making process to enhance protection of human health and the environment. We recommend that future studies target the use of RTMs to identify and quantify critical interfaces that control large-scale biogeochemical reaction rates and ecosystem functioning. Improvements also need to be made in devising scaling approaches to reduce the disconnect between measured data and the scale at which processes occur

    Multi-scale Digital Twin: Developing a fast and physics-informed surrogate model for groundwater contamination with uncertain climate models

    Full text link
    Soil and groundwater contamination is a pervasive problem at thousands of locations across the world. Contaminated sites often require decades to remediate or to monitor natural attenuation. Climate change exacerbates the long-term site management problem because extreme precipitation and/or shifts in precipitation/evapotranspiration regimes could re-mobilize contaminants and proliferate affected groundwater. To quickly assess the spatiotemporal variations of groundwater contamination under uncertain climate disturbances, we developed a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Operator (U-FNO) to solve Partial Differential Equations (PDEs) of groundwater flow and transport simulations at the site scale.We develop a combined loss function that includes both data-driven factors and physical boundary constraints at multiple spatiotemporal scales. Our U-FNOs can reliably predict the spatiotemporal variations of groundwater flow and contaminant transport properties from 1954 to 2100 with realistic climate projections. In parallel, we develop a convolutional autoencoder combined with online clustering to reduce the dimensionality of the vast historical and projected climate data by quantifying climatic region similarities across the United States. The ML-based unique climate clusters provide climate projections for the surrogate modeling and help return reliable future recharge rate projections immediately without querying large climate datasets. In all, this Multi-scale Digital Twin work can advance the field of environmental remediation under climate change.Comment: 5 pages, 2 figures, 1 table, Machine Learning and the Physical Sciences workshop, NeurIPS 202

    Resilient remediation:Addressing extreme weather and climate change, creating community value

    Get PDF
    Recent devastating hurricanes demonstrated that extreme weather and climate change can jeopardize contaminated land remediation and harm public health and the environment. Since early 2016, the Sustainable Remediation Forum (SURF) has led research and organized knowledge exchanges to examine (1) the impacts of climate change and extreme weather events on hazardous waste sites, and (2) how we can mitigate these impacts and create value for communities. The SURF team found that climate change and extreme weather events can undermine the effectiveness of the approved site remediation, and can also affect contaminant toxicity, exposure, organism sensitivity, fate and transport, long-term operations, management, and stewardship of remediation sites. Further, failure to consider social vulnerability to climate change could compromise remediation and adaptation strategies. SURF's recommendations for resilient remediation build on resources and drivers from state, national, and international sources, and marry the practices of sustainable remediation and climate change adaptation. They outline both general principles and site-specific protocols and provide global examples of mitigation and adaptation strategies. Opportunities for synergy include vulnerability assessments that benefit and build on established hazardous waste management law, policy, and practices. SURF's recommendations can guide owners and project managers in developing a site resiliency strategy. Resilient remediation can help expedite cleanup and redevelopment, decrease public health risks, and create jobs, parks, wetlands, and resilient energy sources. Resilient remediation and redevelopment can also positively contribute to achieving international goals for sustainable land management, climate action, clean energy, and sustainable cities

    Simulation Intelligence: Towards a New Generation of Scientific Methods

    Full text link
    The original "Seven Motifs" set forth a roadmap of essential methods for the field of scientific computing, where a motif is an algorithmic method that captures a pattern of computation and data movement. We present the "Nine Motifs of Simulation Intelligence", a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence. We call this merger simulation intelligence (SI), for short. We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system. Using this metaphor, we explore the nature of each layer of the simulation intelligence operating system stack (SI-stack) and the motifs therein: (1) Multi-physics and multi-scale modeling; (2) Surrogate modeling and emulation; (3) Simulation-based inference; (4) Causal modeling and inference; (5) Agent-based modeling; (6) Probabilistic programming; (7) Differentiable programming; (8) Open-ended optimization; (9) Machine programming. We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery, from solving inverse problems in synthetic biology and climate science, to directing nuclear energy experiments and predicting emergent behavior in socioeconomic settings. We elaborate on each layer of the SI-stack, detailing the state-of-art methods, presenting examples to highlight challenges and opportunities, and advocating for specific ways to advance the motifs and the synergies from their combinations. Advancing and integrating these technologies can enable a robust and efficient hypothesis-simulation-analysis type of scientific method, which we introduce with several use-cases for human-machine teaming and automated science

    Sustainable Remediation in Complex Geologic Systems

    No full text
    corecore